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ABSTRACT. 

The energy balance of groundwater flow developed by Oosterbaan, Boonstra and

Rao (1994), and used for the groundwater flow in unconfined aquifers, is

applied to subsurface drainage by pipes or ditches with the possibility to

introduce  entrance  resistance  and/or  (layered)  soils  with  anisotropic

hydraulic conductivities. Owing to the energy associated with the recharge by

downward percolating water, it is found that use of the energy balance leads

to lower water table elevations than when it is ignored.

The energy balance cannot be solved analytically and a computerized

numerical method is needed. An advantage of the numerical method is that the

shape of the water table can be described, which was possible with the

traditional  methods  only  in  particular  situations,  like  drains  without

entrance resistance, resting on an impermeable layer in isotropic soils
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1. INTRODUCTION

Oosterbaan,  Boonstra  and  Rao  (1994)  introduced  the  energy  balance  of

groundwater flow. It is based on equating the change of hydraulic energy flux
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over a horizontal distance to the conversion rate of hydraulic energy into to

friction of flow over that distance. The energy flux is calculated on the

basis of a multiplication of the hydraulic potential and the flow velocity,

integrated over the total flow depth. The conversion rate is determined in

analogy to the heat loss equation of an electric current.

Assuming (1) steady state fluxes, i.e. no water and associated energy

is stored, (2) vertically two-dimensional flow, i.e. the flow pattern repeats

itself in parallel vertical planes, (3) the horizontal component of the flow

is  constant  in  a  vertical  cross-section,  and  (4)  the  soil's  hydraulic

conductivity is constant from place to place, they found that:

dJ     Vx   R(J-Jr)
‒‒ = ‒ ‒‒ ‒ ‒‒‒‒‒‒‒ (1)
dX     Kx    Vx.J    

where:

J  is the level of the water table at distance X, taken with 

   respect to the level of the impermeable base of the aquifer

   (m)

Jr is a reference value of level J (m)

X  is a distance in horizontal direction (m)

Vx is the apparent flow velocity at X in horizontal X-direction 

   (m/day)

Kx is the hoizontal hydraulic conductivity (m/day) 

R  is the steady recharge by downward percolating water stemming

from rain or irrigation water (m/day)

dX is a small increment of distance X (m)

dJ is the increment of level J over increment dX (m)

dJ/dX is the gradient of the water table at X (m/m)

The last term of Equation 1 represents the energy associated with the

recharge R. When the recharge R is zero, Equation 1 yields Darcy's equation.

The negative sign before Vx indicates that the flow is positive when the

gradient dJ/dX is negative, i.e. the flow follows the descending gradient,

and vice versa.

Figure 1 shows the vertically two-dimensional flow of ground water to

parallel ditches resting on a horizontal impermeable base of a phreatic

aquifer  recharged  by  evenly  distributed  percolation  from  rainfall  or

irrigation (R>0, m/day). At the distance X=N (m), i.e. midway between the

ditches, there is a water divide. Here the water table is horizontal.

At the distance XN, the discharge of the aquifer equals
Q = -R(N-X) (m2/day) where the minus sign indicates that the flow is contrary

to the X direction. From this water balance we find Vx = Q/J =  -R(N-X)/J

(m/day). With this expression for the velocity Vx, Equation 1, removing the

negligible term, can be changed into:
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dJ   R(N-X)   Jr-J   
‒‒ = ‒‒‒‒‒‒ ‒ ‒‒‒‒  (2)
dX    Kx.J    N-X    

Setting F = J-Jo, and Fr = Jr-J, where Jo is the value of J at X=0, i.e. at

the edge of the ditch, it is seen that F represents the level of the water

table with respect to the water level in the ditch (the drainage level).

Applying the condition that dF/dX=0 at X=N, we find from Equation 2 that

Fr=Fn, where Fn is the value of F at X=N, and:

dF   R(N-X)   Fn-F 
‒‒ = ‒‒‒‒‒‒ ‒ ‒‒‒‒  (3)
dX    Kx.J    N-X    

Introducing the drain radius C (m), and integrating Equation 3 from X=C to

any value X, gives:

    X   R(N-X)         X  Fn-F  

F =  [ ‒‒‒‒‒‒ ] dX ‒  [‒‒‒‒‒] dX (4)
   C     Kx.J         C    N-X 

Integration of the last term in Equation 4 requires advance knowledge of the

level Fn. To overcome this problem, a numerical solution and a trial and

error procedure must be sought. Oosterbaan et al. gave a method of numerical

solution and an example from which it was found that the water table is lower

than calculated according to the traditional method, except at the place of

the ditch.

In  the  following,  the  equations  will  be  adjusted  for  calculating

subsurface drainage with pipe drains or ditches that do not penetrate to the

impermeable  base,  while  entrance  resistance  may  occur  and  the  soil's

hydraulic conductivity may be anisotropic.

Figure 1. Vertically two-dimensional flow of ground water to parallel

ditches resting on the impermeable base of a phreatic aquifer

      recharged by evenly distributed percolation from rainfall or

      irrigation.
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2. PIPE DRAINS

Figure  2  shows  the  vertically  two-dimensional  flow  of  ground  water  to

parallel pipe drains with a radius C (m), placed at equal depth in a phreatic

aquifer  recharged  by  evenly  distributed  percolation  from  rainfall  or

irrigation (R>0, m/day). The impermeable base is taken horizontal with a

depth D>C (m) below the centre point of the drains. At the distance X=N (m),

i.e. midway between the drains, there is a water divide. Here the water table

is horizontal. 

We consider only the radial flow approaching the drain at one side,

because the flow at the other side is symmetrical, and also only the flow

approaching the drain from below drain level. 

Accorrding to the principle of Hooghoudt (1940), the ground water near

the drains flows radially towards them. In the area of radial flow, the

cross-section of the flow at a distance X from the drains is formed by the

circumference of a quarter circle with a length ½πX. This principle is

concepptualized in Figure 2 by letting an imaginary imperrmeable layer slope

away from the centre of the drain at an angle with a tangent ½π. 

Figure 2. Vertically two-dimensional flow of ground water to parallel

pipe drains placed at equal depth in a phreatic aquifer recharged by

evenly distributed percolation from rainfall or irrigation.

The depth of the imaginary sloping layer at distance X, taken with respect to

the centre point of the drain, equals Y = ½πX (m), so that the vertical

cross-section of the flow is equal to that of the quarter circle. At the

drain, where X = C, the depth Y equals Yc = ½πC, which corresponds to a

quarter of the drain's circumference.
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The sloping imaginary layer intersects the real impermeable base at the

distance:

Xi = 2D / π (5)

The area of radial flow is found between the distances X=C and X=Xi. Beyond

distance X=Xi, the vertical cross-section equals Y=D.

To include the flow approaching the drain from above the drain level,

the total vertical cross-section in the area of radial flow is taken as

J=Y+F.

The  horizontal  component Vx of the  flow  velocity  in  the vertical

section is taken constant, but its vertical component need not be constant.

Now, Equation 4 can be written for two cases as:

    X   R(N-X)           X   Fn-F

C<X<Xi: F =  [‒‒‒‒‒‒‒‒ ] dX  ‒   [‒‒‒‒‒‒] dX (6a)
    C  Kx(F+½πX)        C    N-X 

    X   R(N-X)           X   Fn-F 

Xi<X<N: F =  [ ‒‒‒‒‒‒‒ ] dX  ‒   [‒‒‒‒‒ ] dX (6b)
   C    Kx(F+D)          C   N-X    

3. NUMERICAL INTEGRATION

For the numerical integration, the horizontal distance N is divided into a

number (T) of equally small elements with length U, so that U=N/T. The

elements are numbered S = 1, 2, 3, ...., T. 

The height F at a distance defined by the largest value of distance X

in element S, is denoted as FS. The change of height F over the S-th element

is denoted as GS, and found from:

GS = FS ‒ FS-1

The average value of height F over the S-th element is:

FS = FS-1 + ½GS-1

For the first step (S=i, see Equation 10 below), the value of FS=Fi must be

determined by trial and error because then the slope GS-1 = Gi-1 is not known.

The average value of the horizontal distance X of the S-th element is

found as:

XS = U(S‒0.5)
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The average value of depth Y over the S-th element is:

YS = ½πXS when  C<XS<Xi (7a)

YS = D when  Xi<XS<N (7b)

Equation 3 can now be approximated by:

GS = U.(AS+BS) (8)

where:
AS = R.(N-XS)/ZS

with:
ZS = Kx.(YS+FS) when  C<XS<Xi (9a)

ZS = Kx.(D+FS) when  Xi<XS<N (9b)

and:

BS = (FS‒FT)/(N‒XS)

where FT is the value of FS when S=T. 
The factor Z can be called transmissivity (m2/day) of the aquifer.

Now, the height of the water table at any distance X can be found, conform to

Equations 6a and 6b, from:

     S

FS =  GS (10)
     i

where i is the initial value of the summations, found as the integer value

of:
i = 1 + C/U (11)

so that the summation starts at the outside of the drain.
Since  FS depends on  BS and  BS on  FS and  FT, which is not known in

advance, Equations 8 and 10 must be solved numerically. 

Omitting the last terms of Equations 6a and 6b, i.e. ignoring part of

the energy balance, and further in similarity to the above procedure, a value
GS* can be found as:

GS* = R.U.(N-XS)/ZS* (12)

where:
ZS* = Kx.(YS+FS*)    when    C<XS<Xi

ZS* = Kx.(D+FS*)     when    Xi<XS<N
and:

FS* = FS-1* + ½GS-1* 
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Thus the height of the water table, in conformity to Equation 10, is:

      S
FS* = Σ GS* (13)
      i

This  equation  will  be  used  for  comparison  with  Equation  10  and  with

traditional solutions of Hooghoudt's drainage equations.

4. EXAMPLE OF A NUMERICAL SOLUTION

To illustrate the numerical solutions we use the same data as in an example

of drain spacing calculation with Hooghoudt's equation given by Ritzema

(1994):

N   =   32.5    m C   =  0.1    m
Kx  =    0.14   m/day R   =  0.001  m/day
D   =    4.8    m Fn* =  1.0    m

The calculations for the numerical solutions were made on a computer with the

EnDrain  program  (see  www.waterlog.info/endrain.htm ).  The  results  are

presented in Tables 1 and 2 and in Figure 3.
Table 1 gives the values of height FS (m) and gradients GS/p, AS, BS

at some selected values of distance X, using Equations 8 and 10 (i.e. using

the energy balance) with steps of U=0.05 m, so that in total 650 steps are

taken with a large number of iterations. Smaller values of step U do not

yield significantly different results.
Table 2 gives the values of height  FS* and gradient  GS*/p, at the

same selected values of distance X of Table 1 and 2, using Equations 12 and

13 (i.e. ignoring part of the energy balance).
It is seen from Table 2.2 that the Fn* value (i.e the value of F* at

X=N=32.5  m) equals  0.99 m.  This is  in close agreement with  the  value
Fn*=1.0 m used by Ritzema. 
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Table 1.  Results of the calculations of the height of the
water table at some selected distances with a numerical and 
iterative solution of the hydraulic energy balance for the 
conditions described the example of Section 4, using Equations
8 and 10 with steps U=0.01 m.
------------------------------------------------------------
Distance     Height     Gradient    Gradient     Adjustment
  from       of the       of F     needed for    of A due to 
 drain       water-                 the flow     the energy 
 center      table        G/U          A         of recharge
  X (m)      F (m)       (m/m)       (m/m)        B (m/m)
------------------------------------------------------------
   0.75      0.229       0.146       0.162       -0.017
   1.5       0.302       0.069       0.084       -0.015
   3         0.369       0.028       0.042       -0.013
   6         0.446       0.024       0.036       -0.012
   9         0.515       0.021       0.032       -0.010
  12         0.574       0.018       0.027       -0.009
  15         0.625       0.015       0.023       -0.008
  18         0.667       0.013       0.019       -0.006
  21         0.701       0.010       0.015       -0.005
  24         0.727       0.007       0.011       -0.004
  27         0.745       0.005       0.007       -0.002
  30         0.755       0.002       0.003       -0.001
  32.5       0.758       0.000       0.000        0.000
-----------------------------------------------------------

Table 2.  Results of the calculations of the level 
the water table at some selected distances using a 
numerical solution of Equations 12 and 13 (i.e. 
ignoring part of the energy balance), with steps 
U=0.05 m, for the conditions described in the example
of Section 4.
----------------------------------------------------
 Distance from      Height of the          Gradient
 drain center        water table            of F*
   X (m)               F* (m)             G*/U (m/m)
----------------------------------------------------
    0.75               0.240                0.161
    1.5                0.324                0.083
    3                  0.410                0.042 
    6                  0.524                0.036 
    9                  0.624                0.031 
   12                  0.710                0.027 
   15                  0.784                0.022
   18                  0.845                0.018
   21                  0.894                0.014 
   24                  0.931                0.011 
   27                  0.958                0.007 
   30                  0.972                0.003 
   32.5                0.976                0.000
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Figure 3. The shape of the water table calculated with the energy
balance equation and the Darcy equation (traditional) for the 
conditions given in the example. Graph produced by the EnDrain
program.

Figure 4. Vertical and horizontal dimensions of ditch drains.
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Comparison of the tables learns that the Fn value (i.e. the value of F at
X=N=100 m) of Table 1 (Fn=0.76) is considerably smaller than the Fn* value
(0.98 m) of Table 2 (i.e. without energy balance). This is also shown in

Figure 3.
When a value of elevation  Fn=1.0 m is accepted, the spacing can be

considerably wider than 65 m.

5. DITCHES

The principles of calculating the groundwater flow to ditches are similar as

those to pipe drains.
When the width of the waterbody in the ditch (Wd) is twice its depth

(Dd), then the principles are exactly the same (the ditches are neutral).
Only the radius C of the drain must be replaced by an equivalent radius Ce =
Dd = ½Wd (Figure 4). In conformity to the flow near pipe drains, the water
enters the ditch from one side radially over a perimeter ½πCe. The numerical
calculations start at the distance  X = ½Wd from the central axis of the
ditch. This means that the initial value i (Equation 11) is changed into the
integer value of:

 i'= 1 +  ½Wd/U (14)

The corresponding value of the horizontal distance X is indicated by Xi'.
The depth Y of the sloping impermeable layer is taken with respect to

the water level in the drain. Otherwise the calculations are the same as for

pipes.
 For other situations (Figure 4), we distinguish wide ditches (½Wd>Dd)
from narrow ditches (½Wd<Dd).

For wide ditches, we replace the radius  C by an equivalent radius
Cw=Dd, and we define the excess width as We = ½Wd ‒ Dd. The initial value
i is again changed into i' of Equation 14. Further, the value YS in Equation
7a changes into:

YS' =  ½πXS   [ ½Wd<XS<Xi'] (15)

and the value of ZS in Equation 9a changes into:

ZS' = Kx(FS + YS'+ We) [ ½Wd<XS<Xi'] (16)

For narrow ditches, the radius C is replaced by an equivalent radius Cn =

½Wd, and we define the excess dept as De = Dd-½Wd. Like before, the initial

value i is changed into i'. Further, the factor ZS in Equation 9a is changed

into:

ZS" = Kx(FS+YS+De) [Dd<XS<Xi'] ` (17)
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An example of results of calculations with the energy balance is given in

Table 3 for different ditches but otherwise with the same data as in the
example for pipe drains. All ditches have a wetted surface area of 2 m2. 

From the table it is seen that the elevations Fn of the water table
midway between the ditches are about 70% of the Fn value (0.76) calculated
for pipe drains. Reasons are the larger equivalent radius, which reduces the

contraction of and resistance to the the radial flow, and the larger surface

width, which reduces the width of the catchment area. 

Table 3.  Results of the calculations of the height Fn of

the water table, taken with respect to the drainage level, 

midway between ditches of different shapes, using a numerical

and iterative solution of the hydraulic energy balance for

the the conditions described the example of Section 4, using

Equations 8 and 10 with steps U=0.01 m and making the adjust-

ments as described in Section 5.

-----------------------------------------------------------

 Width     Depth     Equivalent     Type of      Elevation

  Wd        Dd         radius        ditch          Fn

  (m)       (m)         (m)                         (m)

-----------------------------------------------------------

   2        1           1         Neutral          0.55

   3        0.667       0.667     Wide/shallow     0.52

   1        2           0.5       Narrow/deep      0.52

-----------------------------------------------------------

6. ENTRANCE RESISTANCE.

When entrance resistance is present, the water level just outside the drain

is higher than inside by a difference Fe, the entrance head. Now, the first
value  Fi of  FS is  changed  into  Fi'=  Fi+Fe.  Otherwise  the  calculation
procedure remains unchanged.

An example of the results of calculations with the energy balance for

pipe drains with varying entrance heads, but otherwise with the same data as

in the first example for pipe drains, is shown in Table 4. It is seen that
the  increment  of  elevation  Fn  is  a  fraction  of  the  entrance  head  Fe.
However, with increasing heads Fe, the fraction increases somewhat: from 56%
(for Fe=0.1) to 69% (for Fe=0.5). Hence, the adverse effect of entrance head
increases more than proportionally.
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Table 4.  Results of the calculations of the height Fn of

the water table, taken with respect to the drainage level,

midway between drain pipes, with different entrance heads, 

using a numerical and iterative solution of the hydraulic

energy balance for the conditions described the example of

Section 4, using Equations 8 and 10 with steps U=0.01 m

and making the adjustments as described in Section 6.

--------------------------------------------------------
 Entrance      Elevation       Increment (i) of Fn
 head             Fn        --------------------------
 Fe (m)          (m)         i=Fn-0.755     i/Fe in %
--------------------------------------------------------

  0.0           0.757            -             -

  0.1           0.813          0.056          56

  0.2           0.878          0.121          60

  0.3           0.950          0.193          64

  0.4           1.025          0.268          67

  0.5           1.103          0.346          69

--------------------------------------------------------

7. ANISOTROPY

The hydraulic conductivity of the soil may change with depth and be different

in  horizontal  and  vertical  direction.  We  will  distinguish  a  horizontal
conducctivity  Ka of the soil above drainage level, and a horizontal and
vertical  conductivity  Kb  and  Kv  below  drainage  level.  The  following
principles are only valid when  Kv>R, otherwise the recharge R percolates
downwards only partially and the assumed water balance 
Q = ‒R(N‒X) is not applicable.

The effect of the conductivity Kv is taken into account by introducing

the  anisotropy  ratio  A=(Kb/Kv),  as  described  for  example  by  Boumans
(1979). The conductivity Kb is divided by this ratio, yielding a transformed
conductivity: Kt = Kb/A = (Kb.Kv). As normally Kv<Kb, we find A>1 and
Kt<Kb. On the other hand, the depth of the aquifer below the bottom level of
the drain is multiplied with the ratio. Hence the transformed depth is:
Dt=A.D 

The distance Xi=2D/π (Equation 5) of the radial flow now changes into
Xt=2Dt/π. When  A>1, the transformed distance  Xt is larger than  Xi. The
effect of the transformation is that the extended area of radial flow and the
reduced conductivity Kt increase the resistance to the flow and enlarges the
height of the water table.

Including the entrance resistance, the transmissivity ZS (Equations 9a
and 9b), for different types of drains, now becomes:
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pipe drains: ZS = ½πKt.XS + (Kb‒Kt).Dd

                  + Ka.FS [C<XS<Xt]

neutral ditches: ZS = ½πKt.XS + (Kb‒Kt).Dd

      + Ka.FS  [Ce<XS<Xt]

wide ditches:  ZS = ½πKt.XS + (Kb‒Kt).Dd

+ Kv.We + Ka.FS [Cw<XS<Xt]

narrow ditches:  ZS = ½πKt.XS ‒ ½Kt.Wd 

+ Kb.Dd + Ka.FS [Cn<XS<Xt]

all drains:   ZS = Kt.Dt + Ka.FS   [Xt<XS<N]

The suggestion of Boumans to use the wetted perimeter of the ditches to find

the equivalent radius, without making a distinction between wide and narrow

drains, is not followed as this would lead to erroneous results for narrow

and very deep drains, especially when they penetrate to the impermeable

layer. In the latter case there is no radial flow but the use of the wetted

perimeter would introduce it. The proposed method does not.

Table  5 gives  an  example of energy balance  calculations  for pipe
drains in soils with anisotropic hydraulic conductivity using  Ka  = Kb  =
0.14, as in the previous examples, and  Kv  = 0.14, 0.014 and 0.0014. This
yields anisotropy ratios A = 1, 3.16, and 10 respectively. All other data
are the same as in the previous examples.

The table shows that the height Fn increases with increasing ratio A
and the increase is higher for the smaller pipe drains than for the larger

ditches. This is due to the more pronounced contraction of the flow to the

pipe drains than to the ditches and the associated extra resistance to flow

caused by the reduction of the hydraulic conductivity for radial flow from Kb

to Kt.

The  narrow/deep ditches  show  by  far the  smallest  increase  of  the

height Fn, due to their deeper penetration into the soil by which they make
use of the higher horizontal conductivity Kb.
 Unfortunately,  it  is  practically  very  difficult  to  establish  and

maintain such deep drains at field level.
When the height Fn would be fixed, one would see that the spacing in

anisotropic soils is by far the largest for the narrow and deep ditches.

Neutral  drains  would  have  smaller  spacing  than  wide  drains,  i.e.  the

advantage of wide ditches in isotropic soils vanishes in anisotropic soils.

The pipe drains would have the smallest spacing.
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Table 5.  Results of the calculations of the height Fn (m) of the

water table, taken with respect to the drainage level, midway between pipe

drains and ditches in anisotropic soils with a fixed value of the horizontal

hydraulic  conductivity  Kb=0.14  m/day,  using  a  numerical  and  iterative

solution of the hydraulic energy balance for the conditions described the

previous examples, using Equations 8 and 10 with steps U=0.01 m and making

the adjustments as described in Section 7.

----------------------------------------------------------------

                       Height Fn of the water table (m)

Vertical       -------------------------------------------------

hydraulic                                    Ditches

conductivity                  ----------------------------------

               Pipe drains     Neutral     Wide          Narrow

               C=0.1 m         Wd=2 m      Wd=3 m        Wd=1 m

Kv (m/day)                     Dd=1 m      Dd=0.667 m    Dd=2 m

----------------------------------------------------------------

   0.14           0.76          0.55        0.52          0.52

   0.014          1.13          0.69        0.73          0.59

   0.0014         1.63          1.00        1.11          0.74

----------------------------------------------------------------

8. LAYERED (AN)ISOTROPIC SOILS

The soil may consist of distinct (an)isotropic layers. In the following

model, three layers are discerned.

The  first  layer  reaches  to  a  depth  D1  below  the  soil  surface,
corresponding to the depth Wd of the water level in the drain, and it has an
isotropic  hydraulic  conductivity  Ka.  The  layer  represents  the  soil

conditions above drainage level.

The second layer has a reaches to depth D2 below the soil surface
(D2>D1). It has horizontal and vertical hydraulic conductivities K2x and K2v
respectively with an anisotropy ratio  A2. The transformed conductivity is
Kt2 = K2x/A2.

The third layer rests on the impermeable base at a depth D3 (D3>D2).
It  has  a  thickness  T3  = D3‒D2  and  horizontal  and  vertical  hydraulic
conductivities Kx3 and Kv3 respectively with an anisotropy ratio  A3. The
transformed conductivity is Kt3 = Kx3/A3, and the transformed thickness is
Tt3 = A3.T3

When the thickness T3 = 0 and/or the conductivity K3 = 0 (i.e. the
third layer has zero transmissivity and is an impermeable base), the depth
D2 may be both larger or smaller than the bottom depth  Db of the drain.
Otherwise, the depth D2 must be greater than the sum of bottom depth and the
(equivalent) radius (C* = C, Ce, Cw, or Cn) of the drain, lest the radial
flow component to the drain is difficult to calculate.
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For pipe drains, neutral and wide ditch drains, and with D2 > Dw + C* = Dw
+ Dd, the transformed thickness of the second soil layer below drainage
level  becomes  Tt2 =  A2(D2‒Dw).  For  narrow  ditches  we  have  similarly
Tt2 = A2(D2 ‒ Dw ‒ ½Wd + Dd)

With the introduction of an additional soil layer, the expressions of

transmissivity  ZS in Section 7 need again adjustment, as there may two

distances Xt (Xt1 and Xt2) of radial flow instead of one, as the radial flow

may occur in the second and the third soil layer:

Xt1 = 2Tt2/π

Xt2 = Xt1 + 2Tt3/π

With these boundaries, the transmissivities become:

pipe drains:

ZS = ½π.Kt2.XS + (Kx2‒Kt2).Dd + Ka.FS [C<XS<Xt1]

neutral ditches:

ZS = ½π.Kt2.XS + (Kx2‒Kt2).Dd + Ka.FS [Ce<XS<Xt1]

wide ditches:

ZS = ½π.Kt2.XS + (Kx2‒Kt2).Dd + Kv2.We + Ka.FS [Cw<XS<Xt1]

narrow ditches:

ZS = ½π.Kt2.XS ‒ ½Kt2.Wd + Kx2.Dd + Ka.FS [Cn<XS<Xt]

all drains:

ZS = Kt2.Tt2 + ½π.Kt3.XS + Ka.FS [Xt1<XS<Xt2]

ZS = Kt2.Tt2 + Kt3.Tt3 + Ka.FS
[XS>Tt2+Tt3]

An example will be given for pipe drains situated at different depths within

the relatively slowly permeable second layer having different anisotropy

ratios and being underlain by an isotropic, relatively rapidly permeable,

third layer with different conductivities. We have the following data:
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N  = 38 m C   = 0.05 m    R   = 0.007 m/day
D1 = 1.0 m D2  = 2.0 m    D3  = 6.0 m
N  = 38 m Kx2 = 0.5 m/day    Kx3 = 1.0 m/day
Ka = 0.5 m/day Kv2 = 0.5 m/day       Kv3 = 1.0 m/day
and variations: Kv2 = 0.1 m/day    Kv2 = 0.05 m/day
                   Kx3 = Kv3 =2.0 m/day Kx3 = Kv3 = 5.0 m/day

The results are shown in Table 6.

Table 6.  Results of the calculations of the height Fn (m)

of the water table, taken with respect to the drainage

level, midway between pipe drains in a layered soil of

which the second layer, in which the drains are situated,

has varying anisotropy ratios with a fixed value of the
horizontal hydraulic conductivity Kx2=0.5 m/day, using a
numerical and iterative solution of the hydraulic energy

balance for the conditions described the example of Section
8, using Equations 8 and 10 with steps U=0.01 m and making
the adjustments as described in Section 8.

----------------------------------------------------------
Hydr. cond.   Vert. hydr.  Anisotropy    Height Fn of the
3rd layer     cond. Kv2    ratio A2      water table above
 Kx3=Kv3      2nd layer    2nd layer     drainage level
 (m/day)       (m/day)        (-)              (m)

----------------------------------------------------------

  1.0           0.5           1.0         0.54

  1.0           0.1           2.24             0.75 

  1.0           0.05          3.13                  0.86

  2.0           0.5           1.0         0.45

  2.0           0.1           2.24             0.67

  2.0           0.05          3.13                  0.79

  5.0           0.5           1.0         0.37

  5.0           0.1           2.24             0.60

  5.0           0.05          3.13                  0.74

----------------------------------------------------------

The results indicate that both the conductivity of the 3rd layer and the

anisotropy of the 2nd layer, in which the drains are situated, exert a
considerable influence on the height Fn.

In the Netherlands, it is customary to prescribe a minimum permissible

depth of the water table of 0.5 m at a discharge of 7 mm/day, which is

exceeded on average only once a year. In the example, with a drain depth of
1.0 m, this condition is fulfilled when the height  Fn is at most 0.5 m.
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Here, this occurs when Kv2 is at least 0.5 m/day and when Kx3 = Kv3 is at

least 2.0 m. To meet the prescription in the other cases of the example,

either the drain depth should be deeper or the drain spacing narrower.

9. EQUIVALENT HYDRAULIC CONDUCTIVITY

For ditch drains reaching the impermeable layer or pipe drains resting on the

impermeable layer, Hooghoudt derived the following equation (Ritzema 1994):

Q = { 8Kb D Fr + 4Ka Fr2 } / L2 

For the meaning of the symbols see Fig. 1 and Fig. 3. Note that J0 in Fig. 1

equals D in Fig. 3. Q is the drain discharge in m3/day per m2 surface area
drained or m/day.

With a numerical approach, the discharge-weighted average transmissivity 
(Zav) can be calculated. It is found by dividing the the distance from the 
drain to the point midway between the drains into small steps and determining

in each corresponding vertical section the transmissivity below the 

waterlevel in the well (in m2/day) and the discharge (in m2/day). Next these 
two quantities are multiplied and the products are totalized. Finally Zav is 

obtained by dividing this sum of products by the sum of the discharges.

Using Ke = Zav/D, where Ke is the equivalent hydraulic conductivity, 
one will be able to use the above well flow equation for fully penetrating 

drains to a situation with partially penetrating drains not reaching the 
impermeable layer replacing here Kb by Ke.

10. GENERAL CONCLUSIONS

Application of the energy balance of groundwater flow to pipe and ditch

drains leads to lower elevations of the water table or, if the elevation is

fixed, to a wider drain spacing. Also, it can give the shape of the water

table. Further, it can take entrance resistance and anisotropy of the soil's

hydraulic conductivity into account. Calculations with the energy balance

need be done on a computer because of the cumbersome iterative, numerical

procedure required.
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