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Abstract: -  The use of composite probability distributions (i.e.  integrated from two different  distributions,
including inverted/mirrored distributions) is useful in case the data sample is drawn under changing external
conditions, which frequently occurs. The use of composite distributions is not widespread, with the exception
of the Laplace distribution. Also, software for the fitting of such distributions to data series, with the aim to
obtain an impression of the frequency of occurrence under changing external conditions, is scarce. This article
uses  the  calculator  package CumFreqA,  designed for  that  purpose,  and explains  how various well  known
distributions can be used to obtain composite ones. Simultaneously the software finds the optimal value of the
separation point Q of the different distributions left and right of it. Another technique of CumFreqA is to raise
the data to a power P,  whose value can be optimized numerically using iterative procedures,  to reach the
condition  of  minimum  sum  of  squares  of  deviations  of  the  theoretical  from  the  observed  values.  The
transformation of data to obtain a better fit is not often done with the exception of the log-normal distribution
which uses a logarithmic transformation of the data instead of an exponential, which offers more flexibility.
Thus the distribution is generalized and made composite to enhance the goodness of fit. Further, the parameters
of the distributions are found from transformations of the cumulative distribution function leading to linear
equations where after a linear regression is applied, which simplifies the algorithm. The confidence belts of the
cumulative distribution functions in CumFreqA are constructed with the help of the binomial distribution. This
leads to the possibility to construct confidence intervals of the return period as well.  Various examples of
distributions  and  confidence  belts  are  given.  CumFreqA  offers  the  possibility  to  create  histograms  with
intervals by choice and constructs the  corresponding probability density functions,  of  which examples  are
given.

Key words: -  Probability  distribution  fitting,  composite,  generalization,  transformation,  linear  regression,
confidence belt

1 Introduction, Methods Used             
The  CumfreqA  calculator  package  has  been
designed to fit composite probability distributions to
data  series  obtained  under  changing  external
conditions.  For  example,  the  rainfall  in  Northern
Peru  follows  a  different  pattern  when  the  Pacific
Ocean current  El  Niño has  descended down from
Ecuador compared to the situation when the current
has  retreated  form  the  Peruvian  coast  back  to
Ecuador  or  even  Colombia,  and  a  distribution
integrated from two components then provides more
realistic results.

The  software  uses  continuous  cumulative
probability functions (CDF) that can be transformed
and linearized,  such as the Burr,  Cauchy,  Dagum,
Exponential  (Poisson type),  Fisher-Tippet  type  III
(F-T  III),  Frechet  (F-T  II),  Generalized  Extreme
Value  (GEV),  Gompertz,  Gumbel  (F-T  I),
Kumaraswamy, Laplace, Logistic, Student’s t (with
1 and 2 degrees of freedom), Pareto-Lomax and the

Weibull distribution [Ref. 1]. Although the normal
distribution has no explicit expression for the CDF,
it is still included in the model using the numerical
approximation of Hastings [Ref. 2]

To  expand  the  scope,  the  distributions
mentioned,  in  so  far  they  are  skewed  (i.e.  not
symmetrical),  are  also  used  in  their  inverted
(mirrored) form, so that a distribution that is skewed
to the right  becomes  a  distribution skewed to  the
left, and vice versa.

The  aim  of  composition  is  to  find  two
different probability distributions, one left and one
right of a separation point (Q), so that the different
patterns  of  the  data  can  be  caught  with  a  higher
degree of goodness of fit. The two components may
consist of children of the same mother distribution,
but  also  of  different  mothers.  Thus  a  composite
distribution  is  obtained.  In  statistics,  composite
distributions  are scarce, although the composite
Laplace distribution is well known [Ref. 3].
       The composite Weibull-Gamma distribution has
also been used, but it needs an R package [Ref. 4].
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The composite distribution is also known as a two-
component spliced distribution [Ref.5]. 

The CumFreqA model uses two parameters
for  probability  distribution  fitting  that  are  to  be
found by numerical optimization with the condition
of Least Sum of Squares of Deviations (LSSD) of
the theoretical from the observed values. These are
the power (exponent) P to which the data are raised
(0.2<P<3) and the separation point (Q) of the data.
In  statistics,  the  exponential  transformation  of  the
data  is  not  common.  More  often,  logarithmic
transformations have been done as in the log-normal
distribution  [Ref.  6].  The  exponential  transfor-
mation, however, is more versatile. 

The  parameters  of  the  distributions  are
found  from  a  linear  regression  analysis  of  the
transformed and thus linearized CDF functions.

2 Generalization and Linearization 
The generalization of a symmetrical distribution like
the normal  and logistic  distribution by raising the
data  values  to  an  exponent  P  will  result  in  a
distribution skewed to the left when P<1 and to the
right when P>1 (Figure 1).

The continuous probability distributions mentioned
in the introduction are generalized and linearized as
shown  in  Table  1.  The  symbols  used  here  are
explained in the frame hereunder:

  Symbols used in Table 1

Fc = cumulative probability *), X  = stochastic variable, A  = distribution parameter,                     
B  = distribution parameter, C= distribution parameter to be optimized numerically,                      
E = exponent, P  = power for generalization to be optimized numerically, Ft = transformed Fc,     
Z = X^P,  the generalized X,  Xt = transformed X, Zt = transformed Z ,                                          
^   = raised to the power P or exponent E,  *   = multiplication,  /   = division,                             
Sr(Y) = square root of Y,    Y  = a variable, pi = 3.141….,                                                               
Ln(Y) = natural logarithm of Y (with base e),  e = base of LN = 2.71 . . . . ,   Exp(y) = e^y. 

The Fc values are estimated as Fc = R/(N+1), i.e. the plotting position, where:                           
R = rank number in an ascending order of Xi (i=1 . . N)  and N = number of data [Ref. 7]

Table 1. Overview of (inverted/mirrored) continuous probability distributions, 
               their generalization, transformation and linearization as used in CumFreqA
Distribution 
(alphabetically)

Cumulative Distribution 
Function (CDF)

Transformation
and linearization

Comments

Burr, original (Dagum 
mirrored)  ^)

Fc = 1 - [B/(X^A+B)]^E Xt = Ln[B/(X^A+B)] 
Ft = Ln(1-Fc)                     
Ft = E*Xt

B>0, X>B, B is to be optimized 
iteratively                                  
Use ratio method *) to find E

Cauchy generalized
#)

Fc = 
   (1/pi)*arctan(A*Z+B) + 0.5

Xt = Z =X^P                 
Ft = tan{pi*(Fc-0.5)} 
Ft = A*Xt + B

Use linear regression to find
A and B

Dagum, original
(Burr mirrored) ^)

Fc = [B/(X^A+B)]^E Xt = Ln[B/(X^A+B)]    
Ft = Ln(Fc)                    
Ft = E*Xt       

B>0, X>B, B is to be optimized 
iteratively                                  
Use ratio method *) to find E

Exponential generalized Fc = 1 – Exp{-(A*Z+B)}               Xt = Ln(Z) = P*Ln(X)        
Ft  = - Ln (1-Fc)                
Ft = A*Xt + B

Use linear regression to find
A and B

Generalized Exponential 
mirrored ^)

Fc = Exp{-(A*Z+B)} Xt = Ln(Z) = P*Ln(X)        
Ft = -Ln (Fc)                      
Ft = A*Xt + B

Use linear regression to find
A and B

Fisher-Tippet III 
(original)

Fc = Exp[-{(C-X)/Exp(-B/A)}^A] Xt = Ln(C-X)                      
Ft = Ln{-Ln(Fc)}                
Ft = A*Xt + B                

X<C, C is to be optimized 
iteratively. Use linear regression
to find A and B

Fisher-Tippet III 
(mirrored)^ ^)

Fc= 1 - Exp[-{(C-X)/Exp(-B/A)}^A]

Table 1 continued on next page
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Table 1. Continued (for explanation of symbols see the frame on the previous page)
Distribution 
(alphabetically)

Cumulative Distribution 
Function (CDF)

Transformation
and linearization

Comments

Frechet (F-T II)
(original)

Fc = Exp[-{(X-C)/Exp(-B/A)}^A] Xt = Ln(X-C)                               
Ft = Ln{-Ln(Fc)}
Ft = A*Xt + B

X<C, C is to be optimized 
iteratively. Use linear 
regression to find A and B

GEV #)
(skew to right)

Fc = Exp[-{1+C(X-A)/B}^(-1/C)] No transformations A, B and C are to be optimized 
numerically

Gompertz
Generalized #)

Fc = 1 – exp[A*{exp(B*Z) - 1}] Xt = exp(B*Z) – 1                   
Ft = Ln (1-F)                               
Ft = A*Xt

B and P are to be optimized 
numerically .                                  
Use ratio method *) to find A

Gumbel (F-T I)
Generalized

Fc = Exp[-Exp{-(AZ+B)}] Xt = Ln(Z) = P*Ln(X)            
Ft = -Ln{-Ln(Fc)} 
Ft = A*Xt + B

Use linear regression to find A 
and B

Gumbel generalized,
inverted (mirrored) 
^)

Fc = 1 – Exp{-Exp{-A*Z+B)} Xt = Ln(Z) = P*Ln(X) 
Ft = -Ln{-Ln(1-Fc)}  
Ft = A*Xt + B

Use linear regression to find A 
and B numerically

Kumaraswamy 
original #)

Fc = 1 - {1 - (X/C)^B}^A Xt = Ln{(X/C)^B} = B*Ln(X/C)
Ft = Ln(1-Fc)  
Ft = A*Xt

C>Xmax, to be optimized  
numerically .                                  
Use ratio method *) to find A     

Laplace, composite, 
generalized

X<Q:
     Fc = 0.5*Exp{A1*(X^P1-B)} 
X>Q:
    Fc = 1 - 0.5*exp{A2*(X^P2-B)

 

X<Q:
       Ft = ln(2Fc)
       C = -A1*Q
       Ft = A1*X^P1 + C 
X>Q :
        Ft = ln(0.5) - ln(1-Fc) 
        Ft = A2*X^P2

C and A1 are found from a 
linear regression                           
A2 comes from the ratio 
method *)

Logistic generalized
(any skewness)

Fc = 1/(1+Exp(A*X^E+B) Xt = Ln(X^E) = E*Ln(X)
Ft = Ln(-1+1/Fc) 
 Ft = A*Xt + B

Use linear regression to find A 
and B

Normal generalized
(any skewness)

No analytical equation available.
Hastings numerical 
approximation is used

Y = 1/(1+0.232X^P)
N = {1/Sr(2pi)}Exp(-X^2/2)
Fc = 1 - N(1 0.319 Z –
        0.357 Y^2 + 1.781 Y^3
     - 1.821 Y^4 + 1.330Y^5)

Student (1 d.f.)
(symmetrical)

Fc = 0.5 + arctan{(X-AvX)/StD}/pi 
AvX= Average of X
StD = Standard deviation of X

No transformation

,Student (2 d.f.)
(symmetrical)

Fc = 0.5{1+(RedX)}/Sr(2+RedX^2) 
RedX = (X-AvX)/StD

Pareto-Lomax #) Fc = 1 - {B/(X+B)}^E Xt = Ln{B/(X+B)}
Ft = Ln(1-Fc)
Ft = E*Xt

B>0, X>B, B is to be optimized
Use ratio method *) to find E

Weibull generalized Fc = 1 - Exp{-(Z/C)^A} 
with C = Exp(-B/A)

Xt = Ln{Ln(Z)} 
Ft = Ln{-Ln(1-Fc)}
Bt = B/A
Ft = A*Xt + Bt

A and Bt are found from a 
linear regression

Weibull generalized 
mirrored ^)

Fc = Exp{-(Z/C)^A} 
with C = Exp(-B/A

*) The ratio method is a linear regression while forcing the line to go through the origin..
#) These distributions can also be mirrored.
^)  For mirrored (inverted) distributions see figure 1

Fig.1.  A  probability  density  function  (PDF)
skewed to the left (1st picture) becomes skewed
to  the  right  (2nd  picture)  after  being  inverted
(mirrored) and vice versa.
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3 Example, Generalized Distribution, 
No Composition Needed
Figure  2  depicts  the  fitting  of  a  generalized non-
composite  probability  distribution.  The  figure  is
given  to  illustrate  the  facilities  of  the  CumFreq
calculator and the advantages of generalization. In
figure 2 the goodness of fit is 99.1%. In this case it
would not be worth the trouble to go for a composite
distribution even though it might yield a still better
fit, but the difference cannot be significant.

Figure3 shows the histogram and probability density
function pertaining to Figure 2.

Fig.2  The  best  fitting  non-composite  probability
distribution  (GEV)  to  maximum  1-day  rainfalls,
month of November, Suriname [Ref. 8].

Fig.3 Histogram and probability density function for
the distribution depicted in Fig. 2.

When requesting the best fitting of all distributions,
CumFreq  produces  a  list  with  rankings  of  all
distributions by goodness of fit (Figure 4).

In Figure 4 the distribution shown in Figure 2, made
for  maximum  1-day  rainfalls  in  the  months  of
November, Suriname [6], ranks first.

Fig.4  List  of  probability  distributions  ranked  by
goodness  of  fit.  The  list  includes  standard  and
generalized  distributions.  Only the  top-part  of  the
list  is  shown  and  the  generalized  distributions
dominate as they give better fits.

The return periods of the runoffs shown in Figure 2,
together  with  their  confidence  intervals,  are  as
shown  in  Figure  5.  At  higher  rainfalls  the
confidence  intervals  become  wide  so  that  those
return periods are not robust.
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Fig.5  Return  periods  of  rainfalls  with  90%
confidence limits

4 Examples, Composition Needed
Using CumFreqA [Ref. 9], examples will be given
with  the  November  rainfalls  measured  in
Paramaribo, Suriname, during 19 years (1948-1966)
[Ref.  8].  The standard Gumbel  (P=1),  generalized
Gumbel  (P>1  or  P<1),  composite  Gumbel
P1=P2=1),  and  composite  generalized  Gumbel
distributions  are  used.  These  distributions  are  not
the best of all for the data (see Figure 4), but they
give a clear illustration of the principles (Figure 6).

Figures  6.1,  6.2,  6.3  and  6.4  illustrate  that  the
generalized  distributions  perform  better  than  the
standard  ones  (with  Power  P=1)  and  that  the
composite  distributions  have  a  better  fit  than  the
singular ones.

Fig.6.1 Standard Gumbel  distribution Goodness of
fit 89%

Fig.6.2 Generalized Gumbel distribution. Goodness
of fit 93%

Fig.6.3  Composite  standard  Gumbel  distribution.
Goodness of fit 96%

Fig.6.4 Composite generalized Gumbel distribution. 
Goodness of fit 98% 

Fig.6  (6.1,  6.2,  6.3  and  6.4)  Illustration  of
goodness of fit of various forms of the Gumbel
distribution to the rainfall data in Surinam.
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Table  2  gives  the  equations  and  their  parameter
values for the four cases shown in Figure 6 as they
appear  in  the  CumFreqA  output.  When  a
generalized distribution is 

used the values of the exponent P of the X-data is 
given. When a composite distribution is used, the 
value of the separation point Q is also given.

Table 2. CumFreqA output data showing distribution equations and parameter values for the four
cases shown in Figure 6.

Output Standard Gumbel distribution Output Generalized Gumbel distribution

 RESULTS OF CumFreqA CALCULATOR
 Cumulative frequency analysis

 November rainfalls measured during 19 years in
 Suriname
 Rainfall in mm/month
 Name of input file used: C:\SegRegA\Gumbel  
 standard.inp
 Number of data used: 19
 Probability distribution preferred by user.

The cumulative frequency function is double 
exponential (Gumbel):
     Fc = exp[-exp{-(A*X+B)}]
     A    =          0.0111
     B    =          -1.83
     Mode   =  1.6461E+002
The standard error of X is optimized as  114.84 

 RESULTS OF CumFreqA CALCULATOR
 Cumulative frequency analysis

 November rainfalls measured during 19 years in
 Suriname
 Rainfall in mm/month
 Name of input file used: C:\SegRegA\Gumbel
 generalized.inp
 Number of data used: 19
 Probability distribution preferred by user.

 Cumulative frequency function of the generalized
 Gumbel type :
     Fc = exp[-exp{-(A*X^P+B)}]
     The exponent P = 1.84E+000
     A    =     6.6615E-005
     B    =    -0.921

Output Composite Standard Gumbel distribution Output Composite Generalized Gumbel distribution
 
 RESULTS OF CumFreqA CALCULATOR
 Cumulative frequency analysis

 November rainfalls measured during 19 years in
 Suriname
 Rainfall in mm/month
 Name of input file used: C:\SegRegA\Gumbel 
composite.inp
 Number of data used: 19
 Probability distribution preferred by user.

 The cumulative frequency function is composite
 Gumbel :
 The separation point is : Q = 236.240

 X < Q :  Freq = exp[-exp{-(As*X+Bs)}]
               As =  0.00687        Bs =   -1.31
 X > Q :  Fc = exp[-exp{-(Ag*X+Bg)}]
               Ag =   0.0207        Bg =   -4.36

 RESULTS OF CumFreqA CALCULATOR
 Cumulative frequency analysis

 November rainfalls measured during 19 years in
 Suriname
 Rainfall in mm/month
 Name of input file used: C:\CumFreqA\Gumbel 
 generalizedcomposite.inp
 Number of data used: 19
 Probability distribution preferred by user.

 The cumulative frequency function is composite
 Gumbel generalized:
 The separation point is Q = : 235.000

 X < Q :  Freq = exp[-exp{-(As*X^Ps+Bs)}]
               As =    0.003        Bs =  -1.204
               The value of exponent Ps is: 1.15E+000
 X > Q :  Fc = exp[-exp{-(Ag*X^Pg+Bg)}]
               Ag =    0.005        Bg =  -2.050
               The value of exponent Pg is: 1.17E+000
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Figure  7  shows  the  ranking  list  of  standard,
generalized and composite distributions for the case
under discussion (Suriname November rainfall data)
which  is  part  of  the  CumFreqA  output  when  the
option “Best of All” is selected with the input. It is
seen  that  the  composite  Logistic+Poisson  (or
exponential)  distribution  ranks  first  and  that  the
composite  generalized  Gumbel  distribution  (Figure
6.4) ranks 5, while the composite standard Gumbel
distribution (Figure 6.3) ranks 11.

It is also seen that the composite distributions are the
highest ranking illustrating the need of a composite
distribution instead of a non-composite one as in 
Figures 2 and 3.

Fig.7. Ranking list of probability distributions for the
Suriname data, as a part of SegRegA output. The list
includes  generalized,  mirrored,  and  composite
distributions. Only the top-part of the list is shown
exhibiting mainly composite  distributions  owing to
the pattern change of the plotting positions around
X=235

5 Confidence Belts
In Figure 6 the 90% confidence belts of the CDF’s
have been drawn. The confidence intervals are found
from  the  (relative)  standard  deviation  (Sd)  of  the
binomial probability distribution [Ref. 10]:

              Sd = Sr{Fc(1-Fc)/N},

where  Fc  is  the  cumulative  (non-exceedance)
frequency (0<Fc<1), and N is the  number of data.
 
There are only two events: Fc, the non-exceedance)
or (1-Fc), the exceedance, reason why the binomial
distribution is applicable.

The determination of the confidence interval of  Fc
makes use of Student's t-statistic (t) [Ref 11]. Using
90%  confidence  limits  the  t-value  is  close  to  1.7
when  N>10.

The  binomial  distribution  is  symmetrical  when
Fc=0.5  (in  the  center  of  the  distribution),  but  it
becomes  more  skew  when  Fc  approaches  0  or  1.
Therefore  Fc can be used as a weight factor in the
assignation  of   Sd  to  U  and  L  (upper  and  lower
confidence limit respectively):

               U = Fc + 2*1.7 (1-Fc) Sd
               L = Fc – 2*1.7 Fc.Sd

6 Histograms and Probability Density
Functions (PDF)

CumFreqA has  the  possibility  to  make  histograms
and PDF’s [Ref. 12] with a number of intervals that
can be selected by the user. Figure 8 illustrates this
for  the  generalized  composite  Gumbel  distribution
shown in Figure 6.4 using 5 and 10 intervals.  The
PDF’s  are  obtained  by differentiation of  the  CDF.
They correspond well  with the  histograms with an
exception at the separation point.  The discontinuity
at the separation point Q = 235 (Table 2 right under),
where the left hand distribution changes into the right
hand  distribution,  is  clearly  visible.  The  distance
between  the  observed  interval  frequency  and  the
calculated  (theoretical)  frequency  appears  to  be
relatively small, except at X=Q.
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Fig.8.1 Histogram with 5 intervals

Fig.8.2 Histogram with 10 intervals
Fig.8.  CumFreqA  histograms  and  corresponding
probability  density  functions  for  the  composite
generalized Gumbel distribution of Fig. 6.4. 

7 Return Periods
For data obtained in a time sequence, like the rainfall
data under study,  the return period is a much used
characteristic.  It  is  defined  as  T =  1/(1-Fc)  and is
expressed  in  time  units.  For  the  yearly  November
rainfalls, the unit is year. CumFreqA produces tables
and  graphs  of  return  periods  together  with  their
confidence belts (Figure 9). In this figure it can be
seen that a November rainfall of 300 mm or more is
estimated  to  return  on  average  every  7  years,  but
there is a 90% chance that the actual return period is
somewhere between 4 and 10 years. 

Fig.9.  Return  period  in  years  for  the  composite
generalized Gumbel  distribution (Fig. 6.4). 

8 Conclusions
The  generalization  of  probability  distributions
enhances  their  applicability  by  establishing  an
improved  goodness  of  fit.  On  top  of  that,  the
compartmentation  realized  by  composite
distributions  helps  in  producing a  still  better  fit  in
cases where the stochastic variable is influenced by
periodically changing external conditions like shown
in  the  examples  with  November  rainfalls  in
Suriname. 

The  knowledge  and  use  of  generalized  and
composite distributions is very limited. Software for
these distributions is hardly available. Therefore, in
this article, provisions are made to fill the gaps.

The CumFreqA calculator package introduced here
can  be  instrumental  to  apply  generalized  and
composite probability distributions through selection
options in the user interface.
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