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ABSTRACT. An energy balance of groundwater flow is introduced. It is based
on equating the change of hydraulic energy flux over a horizontal distance
to the conversion rate of hydraulic energy into to friction of flow over
that  distance.  The  energy  flux  is  calculated  on  the  basis  of  a
multiplication of the hydraulic potential with the flow velocity, and is
integrated over the total flow depth. The conversion rate is determined in
analogy to the heat loss equation of an electric current. The hydraulic
energy balance is applied to the steady-state flow of water in a phreatic
aquifer  recharged  by  downward  percolation  stemming  from  rainfall  or
irrigation, and a quantitative example is given using a numerical solution.
It is shown that the gradient of the water table is smaller than that
calculated with the current methods, which do not take into account the
energy associated with the incoming percolation water.
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1. ENERGY BALANCES

1.1 Energy fluxes

The hydraulic potential (P) can be defined as the energy per unit volume of
water (ε/m3, where ε represents energy units). The flow velocity (V) of
groundwater can be defined as the discharge per unit cross-sectional area
perpendicular to the direction of flow (m3/day per m2). The product P.V
therefore represents an energy flux, i.e. an energy flow per unit cross-
sectional area (ε/day per m2).

Figure 1 shows a longitudinal section of two-dimensional groundwater flow
(i.e. the flow pattern repeats itself in the planes parallel to the plane of
the drawing) in a phreatic aquifer, i.e. an aquifer with a free water table.
The  water  table  is  recharged  by  downward  percolating  water  (R  m/day)
stemming from rainfall and/or irrigation. A coordinate system, with X (m)
giving the horizontal and Z (m) the vertical distance from the origin, is
also indicated.  The horizontal component of the flow velocity in any point
(X,Z) is indicated by Vx. The Z-levels of the impermeable layer and the
water table in a vertical cross-section are shown as I and J respectively.
   The total energy flow through a vertical cross-section (Ex, ε/day per m
width in the direction perpendicular to the longitudinal section) is

     J
Ex = [Vx(P-Pr)]dZ (1.1)
     I

where Pr is a reference value of P, independent of X and Z, to be determined
in accordance to the boundary conditions of the flow.

Figure 1. A vertical cross-section in a longitudinal section along 
two-dimensional groundwater flow in a phreatic aquifer recharged
by percolation.
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The change of the energy flow Ex per unit distance in a horizontal direction
is

dEx   d  J
─── = ── [Vx(P-Pr)]dZ
dX    dX I

Using Leibnitz's rule, and assuming that the impermeable layer is horizontal
(I=0, dI/dX=0),the above equation can be written as

dEx  J  d                         dJ
─── = [──{Vx(P-Pr)}]dZ + Vj(Pj-Pr)──
dX   0 dX                         dX

where Vj and Pj are the values of Vx and P at the water table.
Partial differentiation of the product Vx(P-Pr) in the previous Equation,

and noting that dPr/dX=0, yields

dEx   J  dP      J       dVx               dJ
─── = (Vx──)dZ + [(P-Pr)───]dZ + Vj(Pj-Pr)── (1.2)

    dX   0   dX      0       dX                dX

1.2. The hydraulic head

The energy units ε, expressed in S.I. units, are kg.m2/day2, so that the
units ε/m3 of the potential P become kg/day2 per m. The potential P can be
converted into an hydraulic head as follows

H = P/ρ.g
where:

H is the hydraulic head (m)
ρ is the mass density of water (kg/m3)
g is the gravitational acceleration (m/day2)

With the conversion of potential P into head H, Equation 1.2 becomes

dEx/dX   J  dH      J       dVx               dJ
────── = (Vx──)dZ + [(H-Hr)───]dZ + Vj(Hj-Hr)── (1.3)
 ρ.g     0  dX      0       dX                dX

F4rom  elementary  hydraulics  we  know  that  the  head  H  consists  of  three
components:  the  elevation  head  (HZ=Z),  the  pressure  head  (HY)  and  the
velocity head (HV). The velocity head of groundwater flow is negligibly
small, so that H=Z+HY. At a phreatic surface, i.e. at the free water table,
the pressure head corresponds to atmospheric pressure, which can be taken as
zero reference pressure, so that HY=0. Hence, for Z=J, i.e. at the water
table, we find HZ=J=J.

Using the Dupuit assumptions that the velocity Vx, the head H, and the
gradient dVx/dX are constant with height Z, so that Vj=Vx and H=HZ=J=J, and
writing Jr for Hr, Equation 1.3 can be simplified to

dEx/dX         dJ          dVx           dJ
────── = (Vx.J)── + J(J-Jr)─── + Vx(J-Jr)── (1.4)
 ρ.g           dX          dX            dX
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The assumption that the horizontal velocity Vx is constant with height is
realistic when the resistance to vertical flow is small compared to that to
horizontal flow. 

1.3. The water balance

When  the  velocity  Vx  is  constant  with  height  Z,  the  two-dimensional
discharge Q (m3/day per m width of cross-section, or m2/day) equals Q=Vx.J,
and its differential coefficient, i.e. the change of discharge Q per unit
change in distance X, becomes:

dQ   d(Vx.J)    dJ     dVx
── = ───── = Vx ── + J ─── = R
dX     dX       X      dX

Hence, Equation 1.4 can be simplified to:

dEx/dX        dJ
───── = (Vx.J)── + R(J-Jr) (1.5)

  ρ.g          dX

1.4. Energy conversion by friction of flow

The electric current in a conduit is known to lose electrical energy by its
conversion to heat. The conversion rate is proportional to the resistance of
the conduit and the square value of the current (the law of Joule). The
resistance is inversely proportional to the conductance. In analogy, the
conversion of hydraulic energy to friction of flow is taken as

     J(Vx)2 
Fx = [───]dZ
     0 Kx

where  Kx  is  the  horizontal  hydraulic  conductivity  of  the  soil  (m/day).
Further, it is stated that the energy loss rate (as in Equation 1.5) is
proportional to the negative value of the friction losses. Thus we obtain:

dE/dX
──── = - Fx
 ρ.g

Combining the previous two equations, and assuming again that the velocity
Vx is constant with height Z, one obtains

dEx/dX      (Vx)2

───── = - J ─── (1.6)
 ρ.g         Kx
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1.5. The hydraulic energy balance for steady state flow

When there is no change in storage of water, and consequently there is no
change in storage of hydraulic energy (i.e. energy storage associated with
water storage), we have a steady state: the hydraulic energy losses are
fully converted into frictional energy. It can then be found from Equation
1.5 and 1.6 that:

   dJ   R(J-Jr)    (Vx)2

Vx ── + ──────  = - ──
   dX     J         Kx

The minus sign in the above equation assures that the energy losses are
positive when the gradient dJ/dX is negative, which occurs when the flow Vx
is positive (i.e. in the positive x-direction or, in Figure 1, to the
right), and vice versa. Division by Vx and rearrangement gives:

dJ     Vx   R(J-Jr)
── = - ── - ──── (1.7)
dX     Kx   Vx.J

2. PHREATIC AQUIFERS WITH RECHARGE

2.1. The hydraulic energy balance equation

Figure 2 shows the two-dimensional flow of groundwater in a phreatic aquifer
recharged  by  evenly  distributed  percolation  from  rainfall  or  irrigation
(R>0, m/day). At the distance X=N (m) there is a water divide, here the
water table is horizontal. The impermeable base is taken horizontal. The
height of the water table above the impermeable base is taken equal to J
(m). At the distance XN, the discharge of the aquifer equals Q=-R(N-X)
(m2/day). We find:

Vx = Q/J = -R(N-X)/J

With this, Equation 1.7 can be changed into

dJ   R(N-X)   Jr-J
── = ────── - ────
dX    Kx.J    N-X

Setting F=J-Jo and Fr=Jr-J, where Jo is the value of J at X=0, and applying
the condition that dF/dX=0 when X=N, we find Fr=Fn, where Fn is the value of
F at X=N, and

dF   R(N-X)  Fn-F
── = ───── - ─── (2.1)
dX    Kx.J   N-X
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Figure 2.  Flow conditions of groundwater in a phreatic aquifer 
recharged by percolation. 

2.2. Integrations

Integrating Equation 2.1 from X=0, where F=0, to any value X, gives

    X R(N-X)    X Fn-F
F = [─────]dX - [───]dX (2.2)
    0 Kx.J      0 N-X

The  integration  of  the  last  term  requires  advance  knowledge  of  Fn.  To
overcome this problem, a numerical solution and a trial and error procedure
is given in Section 2.4.

2.3. The current method of analysis

When, according to the current method of analysis, the Darcy equation is
used with the water balance and the Dupuit assumptions to describe the
groundwater flow under the same conditions, one finds instead of Equation
2.2 (e.g. Wesseling 1973):

    X R(N-X)
F* = [─────]dX (2.3)
     0 Kx.J

Here, the symbol F* is used instead of F to indicate the current method of
analysis. In the following, a numerical solution of Equation 2.4 is given,
but the equation can also be solved directly as
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Fn
*(J0+½Fn*) = ½R.N2/Kx (2.4)

2.4. Numerical integrations

For the numerical integrations, the horizontal distance N is divided into a
number  (T)  of  equal  small  elements  with  length  U,  so  that  U=N/T.  The
elements are numbered S = 1, 2, 3, ...., T. The heights F and J of the water
table in the point defined by the largest value of distance X in element S
are denoted as FS and JS. The change of height F over the S-th element in the
zone of radial flow is denoted as GS and found from

GS = FS - FS-1

The average value of height F over the S-th element is 

FS = FS-1 + ½GS-1

and the average of the cross-sectional height J of flow is

JS = JS-1 + ½GS-1

The average value of the horizontal distance X of the S-th element from the
center of the drain is found as

XS = U(S - 0.5)

Equation 2.1 can now be approximated by:

GS = U(AS+BS) (2.5)
where

AS = R.(N-XS)/K.JS

BS = (FS-FT)/(N-XS)

where FT is the value of FS when S=T. Now, the height of the water table at
any distance X can be found, conform to Equation 2.2, from:

S
FS =  GS (2.6)

1

Since FS depends on BS and BS on FT, which is not known in advance, Equation
2.6 must be solved by trial and error. 

In similarity to the above procedure, the value GS* (where the symbol *
is used to indicate the numerical solution of Equation 2.3 instead of 2.2,
i.e. not using the energy balance but the current method of analysis) is
found as

GS* = R.U(N-XS)/K.JS*  (2.7)

where JS*=JS-1*+½GS-1*. Thus the height of the water table, in conformity to
Equation 2.4, is:

 S
FS* = Σ GS* (2.8)

 1
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2.5. Example of a numerical solution

To illustrate the numerical solutions we use the following data:

N   =  100.0    m J0  =  10.0   m
Kx  =    1.0    m/day R   =  0.01  m/day
U   =    0.5    m

For the example, the calculations with Equations 2.5, 2.6, 2.7 and 2.8 were
made on a computer. The results are presented in the Tables 1 and 2 and in
Figure 3.

Table 1 gives the values of height FS (m) and gradients GS/p, AS, BS at
some selected values of distance X, using Equations 2.5 and 2.6 (i.e. using
the energy balance) with steps of U=0.5 m, so that in total 200 steps are
taken with a large number of iterations per step. Smaller values of step U
do not yield significantly different results.

Table 2 gives the values of height FS* and gradient GS*/p, at the same
selected values of distance X of Table 1 and 2, using Equations 2.7 and 2.8
(i.e. ignoring the energy balance). It is seen from Table 2.2 that the Fn*
value  (i.e  the  value  of  F*  at  X=N=100  m)  equals  4.142  m.  This  is  in
agreement with the value Fn*=4.142 m that can be calculated directly from
Equation 2.4.

Comparison of the tables learns that the Fn value (i.e. the value of F at
X=N=100 m) of Table 1 (Fn=2.972) is considerably smaller than the Fn* value
(4.142 m) of Table 2 (i.e. without energy balance). This is also shown in
Figure 3.

(Postscript. The computer program used was later refined and it uses steps
of U=0.01 m standard. The program is available under the name of EnDrain,
see www.waterlog.info/endrain.htm )

Figure 3.  The shape of the water table calculated with the energy
balance equation and the Darcy equation for the conditions given in the
example.
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Table 1.  Results of the calculations of the height of the
Water table using a numerical and iterative solution of the
hydraulic energy balance with steps U=0.5 m for the condi-
tions described the example, using Equations 2.5 and 2.6.
----------------------------------------------------------
Distance   Height   Gradient    Gradient     Adjustment
           of the     of F     needed for    of A due to 
           water-               the flow     the energy 
           table      G/U          A         of recharge
  X (m)    F (m)     (m/m)       (m/m)        B (m/m)
----------------------------------------------------------
   1       0.070     0.069       0.099       -0.029  
   2       0.138     0.068       0.097       -0.029  
   5       0.336     0.064       0.092       -0.028  
  10       0.643     0.059       0.085       -0.026  
  20       1.181     0.049       0.072       -0.022  
  30       1.630     0.041       0.060       -0.019  
  40       2.004     0.034       0.050       -0.016  
  50       2.310     0.027       0.041       -0.013  
  60       2.553     0.021       0.032       -0.011  
  70       2.739     0.016       0.024       -0.008  
  80       2.869     0.010       0.016       -0.005  
  90       2.947     0.005       0.008       -0.003  
  95       2.966     0.003       0.004       -0.001  
  98       2.971     0.001       0.002       -0.001  
  99       2.972     0.001       0.001       -0.000
 100 (N)   2.972     0.000       0.000       -0.000
---------------------------------------------------------

Table 2.  Results of the calculations of the level of
the water table using a numerical solution of Equation
2.7 and 2.8 (i.e. without energy balance), with steps
U=0.5 m, for the conditions described in the example.
----------------------------------------------------
 Distance           Height of the          Gradient
                     water table            of F*
   X (m)               F* (m)             G*/U (m/m)
----------------------------------------------------
    1                  0.099                0.099 
    2                  0.196                0.097 
    5                  0.476                0.092 
   10                  0.909                0.083 
   20                  1.662                0.069 
   30                  2.288                0.058 
   40                  2.806                0.047 
   50                  3.229                0.038 
   60                  3.564                0.030 
   70                  3.820                0.022 
   80                  4.000                0.015 
   90                  4.107                0.007 
   95                  4.133                0.004 
   98                  4.141                0.002 
   99                  4.142                0.001 
  100 (N)              4.142                0.000 
----------------------------------------------------
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