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6 FREQUENCY AND REGRESSION ANALYSIS 

6.1 Introduction

Frequency analysis, regression analysis, and screening of time series are the most common 

statistical methods of analysing hydrologic data.

Frequency analysis is used to predict how often certain values of a variable phenomenon 

may occur and to assess the reliability of the prediction. It is a tool for determining design 

rainfalls and design discharges for drainage works and drainage structures, especially in 

relation to their required hydraulic capacity.

Regression analysis is used to detect a relation between the values of two or more 

variables, of which at least one is subject to random variation, and to test whether such a 

relation, either assumed or calculated, is statistically significant. It is a tool for detecting 

relations between hydrologic parameters in different places, between the parameters of a 

hydrologic model, between hydraulic parameters and soil parameters, between crop growth 

and water table depth, and so on.

Screening of time series is used to check the consistency of time-dependent data, i.e. data 

that have been collected over a period of time. This precaution is necessary to avoid making 

incorrect hydrologic predictions (e.g. about the amount of annual rainfall or the rate of peak 

runoff).



4

6.5 Regression Analysis

6.5.1 Introduction

Regression analysis was developed to detect the presence of a mathematical relation between 

two or more variables subject to random variation, and to test if such a relation, whether 

assumed or calculated, is statistically significant. If one of these variables stands in causal relation

to another, that variable is called the independent variable. The variable that is affected is called 

the dependent variable.

Often we do not know if a variable is affected directly by another, or if both variables are 

influenced by common causative factors that are unknown or that were not observed. We shall 

consider here relations with only one dependent and one independent variable. For this, we shall

use a two-variable regression. For relations with several independent variables, a multivariate 

regression is used.

Linear two-variable regressions are made according to one of two methods. These are:

- The ratio method (Section 6.5.2);

- The "least squares" method (Section 6.5.3).

The ratio method is often used when the random variation increases or decreases with the 

values of the variables. If this is not the case, the least-squares method is used. The ratio 

method, as we use it here, consists of two steps, namely:

- Calculate the ratio p = y/x of the two variables y and x;

- Calculate the average ratio pav , its standard deviation sPav, and its upper and lower 

confidence limits pu and v, to obtain the expected range of  in repeated samples.

The least squares method consists of finding a mathematical expression for the relation between

two variables x and y, so that the sum of the squared deviations from the mathematical relation 

is minimized. This method can be used for three types of regressions:

- Regressions of y upon x;

- Regressions of x upon y;

- Two-way regressions.

Regressions of y upon x are made if y is causally influenced by x, or to predict the value of y 

from a given value of x. In these regressions, the sum of the squared deviations of y to the 

regression line, i.e. in the y-direction, are minimized.
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Regressions of x upon y are made to predict the value of x from a given value of y. Except for

the reversal of the variables, the procedure for making these regressions is identical to that for 

making regressions of y upon x. Hence here it is the sum of the squared deviations of x that are 

minimized.

Two-way regressions are made if no dependent variable can be selected. These are inter-

mediate regressions that cover the territory between regressions of y upon x and of x upon y.

The relation between y and x need not be linear. It can be curved. To detect a non-linear 

relation, it is common practice to transform the values of y and x. If there is a linear relation 

between the transformed values, a back-transformation will then yield the desired non-linear 

relation.

The majority of these transformations is made by taking log-values of y and x, but other 

transformations are possible (e.g. square root functions, goniometric functions, polynomial 

functions, and so on). Curve fitting can be done conveniently nowadays with computer software

packages.

Further discussion of transformations and non-linear regressions is limited to Example 6.3 of 

Section 6.5.4 and Example 6.4 of Section 6.5.5. For more details, refer to statistical handbooks 

(e.g. Snedecor and Cochran 1986).

6.5.2 The Ratio Method

If the variation in the data (x, y) tends to increase linearly, the ratio method can be applied. This 

reads

y = p.x + ε   or   ŷ = p.x

or
y/x = p + ε'  or   (ŷ/x) = p

where

p           = a constant (the ratio)

ŷ           = the expected value of y according to the ratio method

ε and ε' = a random deviation

(ŷ/x)     = the expected value of the ratio y/x

Figure 6.17 suggests that there is a linear relation between y and x, with a linearly increasing 
variation. The envelopes show that the ratio method is applicable. In situations like this, it is 
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best to transform the pairs of data (y, x) into ratios p = y/x. The average ratio for n pairs is then 
calculated as

pav = Σp/n (6.26)

Using Equation 6.13, we find the standard deviation of p from

sp
2 = Σ(p-pav)/(n-1) = (Σp2 - Σp/n)/(n-1) (6.27)

and using Equation 6.19, we find the standard deviation of pav  from 

sPav = sp/√ n (6.28)

The confidence interval of pav  , i.e. the expected range of pav in repeated samples, is 

approximated by

pu = pav  + t.sPav         (6.29)

pv = pav  - t.sPav (6.30)
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Here, the subscripts u and v denote the upper and lower confidence limits.  The letter t stands 

for the variate of Student's distribution (Table 6.9) at the frequency of exceedance f . If one 

wishes an interval with c% confidence, then one should take f  = 0.5(100 - c)/100 (e.g. f  = 0.05 

when c = 90%). The value of t depends on the number (n) of observations. For large values of 

n, Student's distribution approaches the standard normal distribution. For any value of n, the 

t-distribution is symmetrical about t = 0.

      Table 6.9 Values t of Student’s distribution with d degrees of freedom

                       and frequency of exceedance Fu 
           Fu

   d 0.10 0.05 0.025 0.01

    5 1.48 2.02 2.57 3.37
    6 1.44 1.94 2.45 3.14
    7 1.42 1.90 2.37 3.00
    8 1.40 1.90 2.37 3.00
    9 1.38 1.83 2.26 2.82
  10 1.37 1.81 2.23 2.76
  12 1.36 1.78 2.18 2.68
  14 1.35 1.76 2.15 2.62
  16 1.34 1.75 2.12 2.58
  20 1.33 1.73 2.09 2.53
  25 1.32 1.71 2.06 2.49
  30 1.31 1.70 2.04 2.46
  40 1.30 1.68 2.20 2.42
  60 1.30 1.67 2.00 2.39
100 1.29 1.66 1.99 2.37
200 1.28 1.65 1.97 2.35
  ∞ 1.28 1.65 1.96 2.33

If the confidence interval pu - pv contains a zero value, then pav will not differ significantly from

zero at the chosen confidence level c. Although the value of pav is then called insignificant, this 

does not always mean that it is zero, or unimportant, but only that it cannot be distinguished 

from zero owing to a large scatter or to an insufficient number of data.

Example 6.1 

A series of measurements of drain discharge and water table depth are available on an 

experimental area. The relation between these two variables is supposedly linear, and the 

variation of the data increases approximately linearly with the x and y values. We shall use the 

ratio method to find the relation. The data are tabulated in Table 6.10.
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Table 6.10 Data used in Figure 6.17, where y = drain discharge (mm/d) and  
                  x = height of the water table (m) midway between the drains, 

ith respect to drain level

nr.   y   x p=y/x   nr.   y   x p=y/x

1 3.0 0.30 10.0   10 7.0 0.60 11.7
2 4.0 0.35 11.4    11 6.0 0.60 10.0
3 3.0 0.40   7.5   12 4.5 0.60   7.5
4 4.5 0.45 10.0   13 4.0 0.60   6.7
5 6.0 0.50 12.0   14 5.0 0.65   7.7
6 5.0 0.50 10.0   15 4.5 0.65   6.9
7 4.0 0.50   8.0   16 5.0 0.70   7.1
8 5.0 0.55   9.1   17 6.0 0.75   8.0
9 4.5 0.55   8.2   18 5.0 0.75   6.7

Ratio method   :    p = y/x,    Σp = 158.5,    Σp2 = 1448,    n = 18

Equation 6.26  :    pav = 158.5/18 = 8.8       (average p)

Equation 6.27  :    sp = √(1448-18x8.82)/17  = 1.78   

Equation 6.28  :    spav = 1.78/√18                 = 0.42 

Table       6.9   :     Fu=0.05,  d=17  →  t 90% = 1.75

Equation 6.29  :     pu = 8.8 + 1.75 x 0.42     = 9.5

Equation 6.30  :     pv = 8.8  - 1.75 x 0.42     = 8.1
 

The data of Table 6.10 show that parameter p is estimated as 8.8, the 90% confidence limits 

being pu = 9.5 and pv
  = 8.1. Hence the ratio p is significantly different from zero. In Chapter 

12, the ratio is used to determine the hydraulic conductivity.

Figure 6.18 illustrates situations where y is not zero when x = 0. When this occurs, the ratio 

method can be used if y - yo is substituted for y, and if x - xo is substituted for x. In these cases, 

xo and yo should be determined first, either by eye or by mathematical optimisation.
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6.5.3 Regression of y upon x

The linear regression of y upon x is designed to detect a relation like the following

y = ax + b + ε,  or  ŷ = ax + b (6.31)

where

a = the linear regression coefficient, giving the slope of the regression line
b = the regression constant, giving the intercept of the regression   line on the y axis
ε = a random deviation of the y value from the regression line
ŷ = the expected value of y according to the regression (ŷ = y - ε).

This regression is used when the ε values are independent of the values of y and x. It is used to 

predict the value of y from a value of x, regardless of whether they have a causal relation.
Figure 6.19 illustrates a linear regression line that corresponds to 8 numbered points on a 

graph. A regression line always passes through the central point of the data (, ў, sometimes
                    _       _
indicated by x and y). A straight line through the point (, ў) can be represented by

(y -ў) = a(x - ) (6.32)

where a is the tangent of the angle α in the figure, ў and χ are the arithmetic mean values of x 
                   _       _ 

and y respectively (sometimes indicated by y and x).
Normally, the data (x, y) do not coincide with the line, so a correct representation of the 

regression is

(y -ў) = a(x -) + ε (6.33)

where ε is a vertical distance of the point (x, y) to the regression line. The sum of all the ε values 
equals zero. The difference y-ε gives a y value on the regression line,  ŷ. Substitution of ŷ = y-ε 
in Equation 6.32 gives

(ŷ -ў) = a(x - ) (6.34)

where a is called the regression coefficient of y upon x.

Equation 6.34 can also be written as

ŷ = a x + ў  - a (6.35)

By substituting b = ў  - a  we get Equation 6.31.
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To determine the best possible regression coefficient, one must minimize the Σε2 (the least 
squares method). In other words the choice of the slope of the line and the intercept must fit 
the points as well as possible. To meet this condition we must take

a = Σ'yx / Σ' x2 (6.36)

where

Σ'yx = Σ(y-ў)(x-) (6.37)

Σ'x2 = Σ(x-)2 (6.38)

        Σ'y2 = Σ(y-ў)2 (6.39)

in which the symbol Σ' means "reduced sum". Equation 6.39 was included for use in the ensuing
confidence statements.

The coefficient a can be directly calculated from the (x, y) pairs of data. If a is positive, the 

regression line slopes upward, and an increase in x causes an increase in y, and vice versa. If a is 

negative, the regression line slopes downward. If the regression coefficient a is zero, then there 

is no linear relation between y and x, and the line is horizontal.

The following equations give additional definitions (see Equation 6.13 also)
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sx
2 = Σ'x2/(n-1) = Σ(x-χ)2/(n-1) ={Σx2 – (Σx)2 /n}/(n-1) (6.40)

where sx
2 is called the variance of x 

sy
2 = Σ'y2/(n-1) = Σ(y-ў)2/(n-1) ={Σy2 – (Σy)2 /n}/(n-1) (6.41)

where sy
2 is called the variance of y 

sxy
2 = Σ'xy/(n-1) = Σ(y-ў)(x-χ)/(n-1) ={Σxy – (ΣxΣy)/n}/(n-1) (6.42)

where sxy
2 is called the covariance of x and y.

Therefore, we can also write for Equation 6.36

a = sxy / sx
2 (6.43)

Confidence statements, regression of y upon x

The sum of the squares of the deviations (Σε2) is minimum, but it can still be fairly large, 

indicating that the regression is not very successful. In an unsuccessful regression, the regression

coefficient a is zero, meaning that variations of x do not explain the variation in y, and 

Σε2 = Σ(y-ў)2 = Σ'y2 (compare with Equation 6.39). But if the coefficient a is different from 

zero, part of the y-variation is explained by regression, and the residual variation drops below 

the original variation: Σε2 < Σ'y2. In other words, the residual deviations with regression are 

smaller than the deviations without regression. The smaller the non-explained variation Σε2 

becomes, the more successful the regression is. The ratio Σε2/Σ'y2 equals 1-R2, in which R2 is 

the coefficient of determination, which is a measure of the success of the regression.

In linear regression, the coefficient R equals the absolute value of the correlation coefficient r.

In addition, r2Σ'y2 equals the linearly explained variation and (1-r2)Σ'y2 is the residual variation, 

Σε2. The value of r can be calculated from

         Σ'xy            sxy

r =  ---------- =  ------ (6.44)

       Σ'x2 Σ'y2      sx sy

This correlation coefficient is an indicator of the tendency of the y variable to increase (or 

decrease) with an increase in the x variable. The magnitude of the increase is given by the 

coefficient a. Both are related below as
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r = a sx /sy (6.45)

The correlation coefficient r can assume values of between -1 and +1. If r > 0, the a coefficient 

a is also positive. If r = 1 there is a perfect match of the regression line with the (x, y) data. If 

r < 0, the coefficient a is also negative, and if r = -1, there is also a perfect match, although y 

increases as x decreases and vice versa. If r = 0, the coefficient a is also zero, the regression line 

is parallel to the x-axis, i.e. horizontal, and the y variable has no linear relation with x.

In non-linear relations, the r coefficient is not a useful instrument for judging a relation. The 

coefficient of determination (or explanation) R2 = 1-Σε2/Σ'y2 is then much better (Figure 6.20). 

Because the coefficient a was determined with data of a certain random variation, it is unlikely 
that all of its values will be the same if it is determined again with new sets of data. This means 
that the coefficient a is subject to variation and that a confidence interval will have to be 
determined for it. For this purpose, one can say that it is c% probable that the value of a in 
repeated experiments will be expected in the range delimited by

au = a + tsa (6.46)

av = a - tsa (6.47)

with

               Σε2             (1-r2) Σ'y2

sa
2  =  -------------- = --------------                      (6.48)

           (n-2) Σ'x2       (n-2) Σ'x2      

where

au and av are the upper and lower confidence limits of a

t = a variable following Student's distribution, with d = n - 2  degrees of freedom 

(Table 6.9) and f = 0.5(100-c)/100 is the frequency with which the t value is 

exceeded (the uncertainty)

sa = the standard deviation of the coefficient a

Theoretically, this statement is valid only if the ε deviations are normally distributed and 

independent of x. But for most practical purposes, the confidence interval thus determined gives

a fair idea of the possible variation of the regression coefficient.
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One can also say that, in repeated experiments, there is a c% probability that the ŷ value 

found by regression (ŷ, Equation 6.34) for a given x value, will be in the range limited by

ŷu = ŷ + t sŷ (6.49)

ŷv = ŷ - t sŷ (6.50)

where ŷu  and ŷv  are the upper and lower confidence limits of ŷ and sŷ is the standard deviation 

of ŷ equal to

sŷ = √ {sΥ
2 + (x-χ)2sa

2} (6.51)

Here, sΥ is the standard deviation of Υ, which is the average value of  ε = ŷ – y:

sΥ = √ {Σε2 / (n-2)n}  (6.52)
  

By varying the x value, one obtains a series of  and ŷu and ŷv values, from which the confidence 

belt of the regression line can be constructed. Taking x = 0, one obtains the confidence limits of

the regression constant b. In this case, the value of sΥ
2 is often relatively small, and so Equation 

6.51 can be simplified to

sb = χ  sa (6.53)

and the upper and lower confidence limits of b are

bu = b + t sb = b + t χ sa (6.54)

bv = b -  t sb = b -  t χ sa (6.55)

Note that the above confidence intervals are valid for the regression line. The intervals of 

individual values are wider. To calculate the confidence interval of the y value calculated from a 

certain x value one may use, in similarity to Equations 6.49, 6.50 and 6.51,  yu = ŷ + t sz and

 yv = ŷ – t sz where sz = √ {sΥ
2 + (x-χ)2sa

2}.

With a pocket calculator, it is relatively simple to compute a linear 2-variable regression analysis 

and the corresponding confidence statements because all the calculations can be done knowing 

only n, Σx, Σy, Σ(xy), Σx2, Σy2. This is illustrated in the following example. Nowadays, personal 
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computers are making regressions even easier, and general software packages like spreadsheets 

can be conveniently used.

Example 6.2 Regression y upon x

The data from Table 6.11 were used to do a linear regression of y upon x to determine the 

dependence of crop yield (y) on water table depth (x): y = ax + b. The result is shown in Figure 

6.21.



15

Table 6.11  (y, x) data used in Figure 6.21, with y = crop yield (t/ha) and 
x = seasonal average depth f the water table

nr   y   x   nr  y  x  

1 4.0 0.15   14 4.0 0.50
2 4.5 0.20   15 4.5 0.60
3 3.0 0.20   16 6.0 0.65
4 4.0 0.25   17 4.5 0.65
5 3.7 0.25   18 5.7 0.70
6 3.5 0.32   19 5.0 0.70
7 5.0 0.40   20 5.3 0.75
8 4.5 0.40   21 5.5 0.90
9 4.5 0.40   22 4.7 0.90
10 4.8 0.45   23 5.0 0.91
11 4.5 0.45   24 4.5 1.00
12 5.5 0.47   25 5.7 1.05
13 5.2 0.50   26 5.5 1.08

Σx =   14.87 Σx2   =   10.47 Σxy = 73.46
Σy = 122.60 Σy2   = 591.68 n     = 26           n-2 = 24

χ    = Σx/n =   14.87/26          = 0.57   (average x)
ў    = Σy/n = 122.60/26          = 4.7     (average y)

Equation 6.38    : Σ′ x2 = 10.47 – 14.872/26            = 1.97 

Equation 6.39    : Σ′y2  = 591.68 – 122.602/26        = 1357
Equation 6.37    : Σ′xy =73.46 – 14.87 x 122.60/26 = 3.34

Equation 6.36    : a      = 3.34/1.97                           = 1.70
Equation 6.35    : b      = 4.7 – 1.70 x 0.57               = 3.73
Equation 6.44    :  r     = 3.34/√1.97 x 13.57             = 0.65 → r2 = 0.42

Equation 6.48    : Σε2  = (1-0.42) 13.57                    = 7.87

Equation 6.48    : sa    = √{787/(24 x 1.97)}             = 0.42

Table      6.9       : Fu   = 0.005,  d = 24  →     t90%   = 1.71

Equation 6.46    : au    = 1.70 + 1.71 x 0.41              = 2.4

Equation 6.47    : av    = 1.70 + 1.71 x 0.23              = 1.0  

Equation 6.53    : sb    = 0.57 x 0.41                          = 0.23

Equation 6.54    : bu    = 3.73 + 1.71 x 0.23              = 4.1

Equation 6.55    : bv    = 3.73  - 1.71 x 0.23              = 3.3

    x = χ → 

Equation 6.51     : sŷ = sΥ  = √{7.87/(24 x 26)}         = 0.11 

Equation 6.49    : ŷu    = 4.7 + 1.71 x 0.11                = 4.9

Equation 6.50    : ŷu    = 4.7 -  1.71 x 0.11                = 4.5
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From the table, we see that the confidence limits of the regression coefficient (a = 1.70) are 

au = 2.4 and av = 1.0. Hence, although the coefficient is significant, its range is wide. Because 

r2 = 0.42, we know that the regression explains 42% of the squared variations in y. As the 

regression equation (Equation 6.41), we get

(ŷ - 4.7) = a(x - 0.57)

With the calculated b, the regression result can also be written as

ŷ = a x + 3.73  (n = 18, r = 0.65)

According to this, every 0.10 m that the water table rises results in an average crop yield increase

of 0.17 t/ha (using a = 1.70), with a maximum of 0.24 t/ha (using au = 2.4) and a minimum of 

0.10 t/ha (using av = 1.0). 

6.5.4 Linear Two-way Regression

Linear two-way regression is based on a simultaneous regression of y upon x and of x upon y. It 

is used to estimate the parameters (regression coefficient a and intercept b) of linear relations 

between x and y, which do not have a causal relation. 

Regression of y upon x yields a regression coefficient a. If the regression of x upon y yields a 

regression coefficient a', we get, analogous to Equation 6.34

(xe- ) = a'(y -ў ) (6.56)

Normally, one would expect that a'= 1/a. With regression, however, this is only true if the 

correlation coefficient r = 1, because

a'.a = r2 (6.57)

The intermediate regression coefficient a* becomes

a* = √ (a/a' ) = sy/sx (6.58)

which gives the geometric mean of the coefficients a and 1/a'. The expression of the 

intermediate regression line then becomes:
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(y*-ў ) = a*(x* -χ ) (6.59)

or

y* = a*x* + b* (6.60)

where

b* =y* - a*χ (6.61)

The symbols y* and x* are used to indicate the y and x values on the intermediate regression 

line.

Because the intermediate regression coefficient a* results from the regression of y upon x and

of x upon y, one speaks here of a two-way regression.

The intermediate regression line is, approximately, the bisectrix of the angle formed by the 

regression lines of y upon x and of x upon y in the central point (χ, ў).

Confidence interval of the coefficient a*

In conformity with Equations 6.46 and 6.47, the confidence limits of the intermediate regression

coefficient a* are given by

a*u = a* + t sa* (6.62)

a*v = a* - t sa* (6.63)

where the standard deviation sa* of a* is found from

sa* = a* sa/a = a* sa'/a' (6.64)

This shows that the relative standard deviation sa*/a* is considered equal to the relative standard

deviation sa/a  and sa'/a'. In general, the relative standard deviations of all regression 

coefficients are equal

sa*/a* = Sa/a = Sa'/a' = s1/a'/(1/a') = a's1/a'
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Confidence belt of the intermediate regression line

The confidence belt of the intermediate regression line can be constructed from the confidence 

intervals of y* or x*. We shall limit ourselves here to the confidence intervals of y*.

In conformity with, Equations 6.49, 6.50, and 6.51 we can write

yu* = y* + t sy* (6.65)

yv* = y* - t sy* (6.67)

where

sy* = √ (sў2 + (x* - χ)2sa*) (6.68)

And in conformity with Equations 6.53, 6.54, and 6.55 we get

sb* =χ  sa* (6.69)

b*u = b* + t sb* (6.70)

b*v = b* - t sb* (6.71)

An example of how to use these equations follows.

Example 6.3 Two-way regression

Let us assume that we wish to determine the hydraulic conductivity of a soil with two different 

layers. We have observations on drain discharge (q) and hydraulic head (h), and we know that 

q/h and h are linearly related: q/h = a*h + b*. The hydraulic conductivity can be determined 

from the parameters a* and b* (Chapter 12), whose values can be found from a two-way 

regression.

In Table 6.12 one finds the two-way regression calculations, made according to the equations 

above, in which h replaces x and z = q/h replaces y. Although the values of both a* and b* are 

significantly different from zero, we can see that they are not very accurate. This is partly owing 

to the high scatter of the data and partly to their limited number (Figure 6.22).

Figure 6.22 shows the confidence intervals of the regression line, which are based on the 

confidence intervals of b* and a* that were calculated in Table 6.11. Despite the fairly high 
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correlation coefficient (r = 0.83), the confidence intervals are quite wide. This problem can be 

reduced if we increase the number of observations.

Table 6.12  Values of the hydraulic head (h), the discharge (q) and their 
ratio (z=q/h) in a drainage experimental field

nr     q     h z = q/h

1 0.0009   0.17 0.0053
2 0.0011   0.19 0.0058
3 0.0022   0.28 0.0079
4 0.0020   0.30 0.0066
5 0.0034   0.40 0.0085
6 0.0032   0.40 0.0080
7 0.0031   0.42 0.0074
8 0.0035   0.45 0.0078
9 0.0044   0.48 0.0092
10 0.0042   0.51 0.0082
11 0.0057   0.66 0.0086

Σh = 4.26 Σh2   =  1.86 Σhz = 73.46
Σz = 0.0833 Σz2   =  0.000645 n     = 11  n-2 = 9

hav    = Σh/n = 0.387          = 0.57   (average h)

zav    = Σz/n = 0.00757          = 4.7     (average z)

Equation 6.38    : Σ′ h
2
 = 1.86 – 4.262/11                = 0.209 

Equation 6.39    : Σ′z
2
  = 0.00645 – 0.03332/11       = 0.0000145

Equation 6.37    : Σ′hz  =73.46 – 4.26 x 0.0833/11  = 0.00144
Equation 6.44    :  r     = 0.00144/√(0.209 x 0.0000145 = 0.83
                            r2    = 0.832  = 0.69

Equation 6.51    : a′    = 0.69/0.0069                      = 100
Equation 6.53   : a*   = √(0.0069 x 0.0100)                 = 0.0083
Equation 6.48    : Σε2  = (1-0.69) x 0.0000415             = 0.00000450

Equation 6.48    : sa    = √{0.00000450/(9 x 0.209)}    = 0.00155

Equation 6.53  : sa*  = 0.0083 x 0.00155/0.0069        = 0.00186

Table      6.9           : Fu   = 0.005,  d =9   →           t90%    = 1.83

Equation 6.57    : a*u  = 0.0083 + 1.83 x 0.00186        = 0.0117

Equation 6.47    : a*v  = 0.0083  - 1.83 x 0.00186        = 0.0049

Equation 6.61    : b*   = 0.00757 – 0.0083 x 0.0378    = 0.0044

Equation 6.53  : sb*  = 0.387 x 0.0019                       = 0.00074

Equation 6.69    : b*u  = 0.0044 + 1.83 x 0.00074       = 0.0058

Equation 6.69    : b*v  = 0.0044  - 1.83 x 0.00074       = 0.0030
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    _        _

   (in this figure the symbols h and z are used instead of hav and zav)

6.5.5 Segmented Linear Regression

In agriculture, crops will often react to a production factor x within a certain range of x, but not 

outside this range. One might consider using curvilinear regression to calculate the relation 

between crop yield (y) and x, but the linear regression theory, in the form of segmented linear 

regression, can also be used to calculate the relation.

Segmented linear regression applies linear regression to (x, y) data that do not have a linear 

relation. It introduces one or more breakpoints, whereupon separate linear regressions are made 

for the linear segments. Thus, the non-linear relation is approximated by linear segments. 

Nijland and El Guindy (1986) used it to calculate a multi-variate regression. A critical element 

is the locating of the breakpoint. Oosterbaan et al. (1990) have presented a method for 

calculating confidence intervals of the breakpoints so that the breakpoint with the smallest 

interval i.e. the optimum break point, can be selected.
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Example 6.4 Segmented linear regression with one breakpoint

Segmented linearization (or broken-line regression) will be illustrated with the data from Figure 

6.21 as shown again in Figure 6.23. In this example the optimum breakpoint was at x = 0.55  m. 

The subsequent calculations are presented in Table 6.13.
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Table 6.13  Segmented linear regression calculations with the data of Table 6.11

1) Segment with x < 0.55m

Σx =   4.94 Σx2   =     1.94 Σxy = 22.12
Σy = 60.7  Σy2   = 269.26 n     = 14            n-2 = 12
χ    = Σx/n =   4.94/14          = 0.35 m     (average x)
ў    = Σy/n = 60.7/14          = 4.3   t/ha  (average y)

Equation 6.38    : Σ′ x
2
 = 1.94 – 4.942/14                = 0.19 

Equation 6.39    : Σ′y
2
  = 269.26 – 60.72/14            = 6.09

Equation 6.37    : Σ′xy =22.12 – 4.94 x 60.7/14      = 0.70
Equation 6.36    : a      = 0.70/0.19                           = 3.62
Equation 6.35    : b      = 4.3 – 3.62 x 0.35               = 3.06
Equation 6.44    :  r     = 0.70/√(0.19 x 6.09)            = 0.64 → r2 = 0.41
Equation 6.48    : Σε2  = (1-0.41)  x 6.09                  = 3.57

Equation 6.48    : sa    = √{3.57/(14 x 0.19)}            = 0.42

Table      6.9           : Fu   = 0.005,  d = 12  →            t90%   = 1.78

Equation 6.46    : au    = 3.62 + 1.78 x 0.42              = 5.83

Equation 6.47    : av    = 3.62  - 1.78 x 0.42              = 1.40  
    x = χ → 

Equation 6.51     : sŷ = sΥ  = √{3.57/(14 x 12)}         = 0.15

Equation 6.49    : x=χ → ŷu  = 4.3+1.78 x 0.15        = 4.6 t/ha

Equation 6.50    : x=χ → ŷu  = 4.3 -1.78 x 0.15        = 4.0 t/ha

2)    Segment with x > 0.55m

Σx =   9.39 Σx2   =     8.54 Σxy = 51.35
Σy = 61.9  Σy2   = 322.41 n     = 12           n-2 = 10
χ    = Σx/n =   9.39/12          = 0.83 m     (average x)
ў    = Σy/n = 60.7/26          = 5.2   t/ha  (average y)

Equation 6.38    : Σ′ x
2
 = 8.54 – 9.392/12                = 0.32 

Equation 6.39    : Σ′y
2
  = 322.41 – 61.92/12            = 3.11

Equation 6.37    : Σ′xy =51.35 – 9.39 x 61.9/12      = 0.12
Equation 6.36    : a      = 0.12/0.32                           = 0.38 
Equation 6.35    : b      = 5.2 – 0.38 x 0.83               = 4.48
Equation 6.44    :  r     = 0.12/√(0.32 x 3.11)            = 0.14 → r2 = 0.02
Equation 6.48    : Σε2  = (1-0.02)  x 3.11                  = 3.06

Equation 6.48    : sa    = √{3.06/(12 x 0.32)}            = 0.89

Table      6.9           : Fu   = 0.005,  d = 10  →     t90%   = 1.81

Equation 6.46    : au    = 0.38 + 1.81 x 0.89              = 2.15

Equation 6.47    : av    = 0.38  - 1.81 x 0.89              = - 1.38
    x = χ → 

Equation 6.51     : sŷ = sΥ  = √{3.06(12x 10)]           = 0.16

Equation 6.49    : x=χ → ŷu  = 5.2+1.81 x 0.16        = 5.5 t/ha

Equation 6.50    : x=χ → ŷu  = 5.2 -1.81 x 0.16        = 4.9t/ha



23

Discussion

The total Σε2 = 3.57 + 3.06 = 6.63 in Table 6.13 is lower than the Σε2 = 7.87 of Example 6.2, 

which represents the linear regression using all the data without a breakpoint. This means that 

the segmented regression gives a better explanation of the effect of water table depth on crop 

yield than does the un-segmented regression. One can test whether this improvement is 

significant at a certain confidence level by comparing the reduction in Σε2 with the residual 

variation after segmented linear regression. One then checks the variance ratio using an F-test, a 

procedure that is not discussed here. In this example, the improvement is not statistically 

significant. This difficulty could be obviated, however, by the collection of more data.

The regression coefficient (a = 0.38) for the data with x > 0.55 is very small and insignificant 

at the 90% confidence level because av < 0 < au, meaning that no influence of x upon y can be 

established for that segment.

On the other hand, the regression coefficient (a = 3.62) for the data with x < 0.55 is 

significant at the chosen confidence. Hence, the yield (y) is significantly affected by water tables 

(x) shallower than 0.55 m.

In accordance with Equation 6.31, the regression equations become

ŷ= ў = 5.2                                              [ x > 0.55 m]

ŷ= 3.62 (x-0.35) + 4.3 = 3.62 x + 3.1     [x < 0.55 m]

The intersection point of the two lines need not coincide exactly with the breakpoint; when the 

segmented regression is significant, the difference is almost negligible.

Using nv = number of data with x < 0.55 and nt = total number of data, and assuming that 

the points in Figure 6.23 represent fields in a planned drainage area, one could say that 

nv/nt = 14/26 = 54% of the fields would benefit from drainage to bring the water tabledepth x 

to a value of at least 0.55 m, and that 46% would not. An indication of the average yield increase

for the project area could be obtained as follows, with χ being the average water table depth in 

the segment x < 0.55

Δy = a(0.55-χ)nv/nt = 3.62(0.55-0.35)0.54 = 0.4 t/ha

with confidence limits Δyu = 0.6 and Δyv = 0.2, which are calculated with au = 5.83 and 

av = 1.40 instead of a = 3.62. From Example 6.2, we know that the average current yield is 

ў = 4.7 t/ha. Accordingly, we have a relative yield increase of 0.4/4.7 = 9%, with 90% 

confidence limits of 0.6/4.7 = 13% and 0.2/4.7 = 4%.
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NOTE

The computer program SegReg (on www.waterlog.info  /segreg.htm ) has been designed to 

automatically detect breakpoints in linear regression models and present the necessary 

confidence intervals.
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